
LAND PEATE LAND PEATE CHECKLISTCHECKLIST  
GENERAL ORGANIZATION 
The NPP2 repository is constructed differently from the NPP repository.  Principal 
differences include  

1. Library organization for build 48 related code: 
a. All PGEs, shared codes and libraries may be built using flags for MODIS 

or VIIRS tile sizes (VIIRS tile size is the default) and may be built in 
DEBUG mode (Production mode, which does not use the debug flag, is 
the default) 

b. The top-level NPP2 directory now contains library subdirectories 
containing built 32- and 64-bit libraries which may be downloaded 
(NPP2/lib32/VIIRS_TILE_SIZE, NPP2/lib32/MODIS_TILE_SIZE, 
NPP2/lib64/MODIS_TILE_SIZE, NPP2/lib64/VIIRS_TILE_SIZE.)  These 
libraries are static libraries and are production mode.   

c. The directory NPP2/Library/ contains subdirectories to contain DEBUG 
versions of the libraries.  Unlike the production versions, the debug 
versions are not entered into the NPP2 repository and must be built by the 
user.  Some debug library versions are dynamic. 

d. The directory NPP2/Library/buildfiles contains master build files and 
makefiles to build current versions of all the libraries in any of the 4 
possible modes through the use of command-line directives.  The 
buildfiles directory also contains subdirectories which contain buildfiles 
specific to each of the four instances. 

e. Libraries are organized into 5 groups.  You should read the document 
README.Library.txt file located in the NPP2/Library/COMB directory to 
familiarize yourself with these groups. 

 
2. Library organization for build Mx4 (IDPS v1.5.04.00) related code: 

a. All OPS PGEs, shared codes and libraries may be built in either 
STANDARD or DEBUG mode.  By default, the Land PEATE builds the 
codes to use the MODIS_TILE_SIZE for the OPS Gridding codes. 

b. The top-level NPP2 directory for Mx4 is NPP2/branches/Mx4 which 
contains library subdirectories that store built 32- and 64-bit libraries which 
may be downloaded (NPP2/branches/Mx4/lib32/STANDARD, 
NPP2/lib64/STANDARD.)  These libraries are static libraries and are 
production mode.   

c. The directory NPP2/branches/Mx4/Library/ contains a subdirectory labeled 
“DEBUG” which is where the DEBUG versions of the libraries are stored.  
However, unlike the production versions, the debug versions are not 
entered into the NPP2 repository and must be built by the user.  Some 
debug library versions are dynamic. 

d. The directory NPP2/ branches/Mx4/Library/buildfiles contains master build 
files and makefiles to build current versions of all the libraries in any of the 
4 possible modes through the use of command-line directives.  The 



 
 

August 2011 Page 2 
 

buildfiles directory also contains subdirectories which contain buildfiles 
specific to each of the four instances. 

e. Libraries are organized into 5 groups.  You should read the document 
README.Library.txt file located in the NPP2/branches/Mx4/Library/COMB 
directory  to familiarize yourself with these groups. 
 

3. Top Level directory organization 
The top-level build 48 directory, NPP2, or for Mx4, NPP2/branches/Mx4, contains 
several subdirectories: 

a. The “lib32”, “lib64”, and “Library” directories mentioned above. 
b. A “Templates” directory which contains header templates for code, 

makefiles, and buildfiles. 
c. A “Tools” directory which contains various off-line programs which may be 

built and / or run by developers or users. 
d. A “Config” directory containing the master setup files to set up the user 

environment. 
e. A “Documentation” directory containing Land PEATE documentation such 

as the System Description Document. 
f. A “SCIENCE” subdirectory containing Science code and also containing 

the Land PEATE DDRs adapted from MODIS code. 
g. An “OPS” subdirectory which contains the LPEATE PGEs, Libraries, and 

Include files. 
h. An “IDPS” subdirectory which mimics the structure of the Operational code 

developed by Raytheon/NGST.  The code in this directory has been 
adapted from the original code. 

 
 
PHILOSOPHY 
Whenever we as developers make adaptations to the IDPS code, we want to do so in a 
way that is as non-intrusive as possible.  (That is unfortunately not always something 
that can be done, but changes are kept to a minimum).  At the same time we want 
absolutely no dependence on the IDPS Dynamic Memory System (DMS) module and 
you will note that it is not a subdirectory of the IDPS directory (the only subdirectories in 
subversion’s IDPS are PRO, where the bulk of the algorithm code resides, INF, which 
contains some informative/control structures but is extensively gutted from the IDPS 
original, and the ING directory, which contains definitions of various configuration-
defining structures). 
To this end, 

• If your PGE depends on IDPS libraries, and it obviously will, try to understand 
those dependencies.   

• If your code needs include files which are not in the ../include directory where 
your algorithm resides, copy them into the locations in the repository’s IDPS 
directory that correspond to their location in the original IDPS code (and look to 



 
 

August 2011 Page 3 
 

be sure they aren’t there already before you do so.)  You may need to edit them 
somewhat but be sure to keep it to a minimum. 

BEFORE YOU START A NEW CODE INTEGRATION 
1. Locate the new code in the code delivery area.   
2. Look at the XML config file for that module in PRO/cfg.  Are there any changes to 

it from the previous version? 
3. Look at the LUTs which are required for input to your module.  Are they identical 

to those for the previous version?  If so, you're in luck.  You can continue to use 
the already byteswapped versions.  If they are not, don't forget that they must be 
byteswapped and the code to do it must be entered or updated in the svn 
repository (under OPS/PGExxx/byteswapping) 

4. Are there any overall organizational differences between the old and new 
versions? (e.g. cross-granule where it was not, or vice versa)? 

5. Most of the library modules under PRO are already imported into the NPP2 
repository and have been altered to run in our environment.  Ditto the include 
files associated to them.  Don’t pull files from those modules into your PGE 
directory. 

 
WHILE YOU ARE CODING 

1. Use the built-in capabilities of the IDPS code to read the ProCmnDictionary files, 
xml configuration files, and so forth needed by the module.  PGE353 is a good 
example to look at.  NOTE:  You can set environment variables relating to which 
XML files and text files to read from within the C++ code; there is no need to do 
so from the perl script (See PGE353). 

2. Note that the new libraries in NPP2, both B48 and Mx4, have the capability to 
look for alternate swath names, grid names, and field names.  See these: 

a. HDFGridFile::HDFGridVar *getVar(stringvec gridNames, string varName) 
b.  HDFGridFile::HDFGridVar *getVar(string gridName, stringvec varNames) 
c.  HDFGridFile::HDFGridVar *getVar(stringvec gridNames, stringvec 

varNames) 
d.  HDFFile::findDataField(stringvec fieldNames);  
e. HDFData::findDataField(stringvec fieldNames)  
f. HDFData (string path, stringvec swathNames, HDFmode rw, 

viirsDataType dataType = SDSType), HDFData::findSwath(stringvec 
swathNames) 

 
3. LUTs and LUT Structures   

a. Keep in mind that you need to build for both 32- and 64-bit machines; that 
means you may need to specify a preprocessor pragma pack(4) in some 
cases.  When you do, you should surround it with preprocessor “ifdef 
LINUX” switches.  See headers in the PRO/VIIRS/SDR libraries for some 
pragma examples.  Keep in mind you need to do this before you 
byteswap. 



 
 

August 2011 Page 4 
 

b. Do your LUTs have the correct version number on the end of their names?  
Please, no LUTs without versions. 

c. Have you used macros to specify any numbers (e.g. number of cross-
granule rows, a dimension, etc.)?  DID YOU CHECK TO SEE WHETHER 
THE QUANTITY ALREADY EXISTS AS A MACRO, either determined by 
the LPEATE or by IDPS? 

d. Have you byteswapped any new/changed LUTs or config files? 
 

4. Configuration file environment variables and makefile flags 
Note that the automatic setup in NPP2/Config, or NPP2/branches/Mx4/Config, 
triggered by dev_NPP_OPS_env_setup or dev_NPP_SCI_env_setup is subject 
to some command-line control but also automatically sets some environment 
variables. 

a. Command-line control includes using the “debug” and/or, for B48 the 
“MODIS_TILE_SIZE”, commands on the command line, which is what the 
specific setup files “dev_NPP_OPS_env_setup_debug”, 
“dev_NPP_OPS_env_setup_modtile”, 
“dev_NPP_OPS_env_setup_debug_modtile”, and 
“dev_NPP_SCI_env_setup_debug” do (there are no SCIENCE setup files 
specifying MODIS tile size because that is the only option for Science 
files).  Also note that for dev_NPP_SCI_env_setup files only, additional 
special science flags may be used on the command line.  See the header 
of the dev_buildlibs_SCIENCE in the NPP2/Library/buildfiles or 
NPP2/branches/Mx4/Library/buildfiles area for more details. 

b. Automatic control in the Config files sets environment variables 
appropriately depending on 

i. Whether the machine being used is a 32-bit or a 64-bit machine 
(This works for Linux only, but the Land PEATE machines are all 
Linux machines) 

ii. Whether the machine is a big- or little-endian machine (done by 
checking the node name; it is expected that those using a non-Land 
PEATE machine will edit the file appropriately) 

iii. The file “Config/npp_buld_env_linux.csh” assumes the machine 
being used is a Linux machine and sets an environment variable to 
indicate so, the line for which is: “setenv LINUXNESS YES”.  If the 
machine being worked on is not Linux, then this line should be 
edited to set LINUXNESS to “NO” instead.  

c. Makefile flags are set appropriately by the LP_SetMode.mk file located in 
Library/buildfiles which is included by Land_PEATE.mk.  The makefile 
flags which are set are 

i. The flag __32_BIT__ indicating a 32-bit machine 
ii. The flag __LITTLE_ENDIAN__ indicating a little-endian machine 
iii. The flag LINUX indicating a LINUX machine 
iv. The flag _MODIS_TILE_SIZE_ denoting MODIS (rather than 

VIIRS) tile size (the default for Mx4) 



 
 

August 2011 Page 5 
 

v. A flag indicating HDF5 version:  _V167_HDF5_ indicates HDF5 
V1.6.7 whereas the flag _V180_HDF5_ indicates HDF5 Version 
1.8.0. 

 
WHEN YOU ARE BUILDING 

1. Makefile:  Does your makefile conform to the new NPP2 paradigm?   
a. Have you used the included makefile  “LandPEATE.mk”?   
b. Have you followed the makefile template in Templates?   
c. Have you fixed the makefile so that dependencies can be generated?   
d. Does your makefile construct different executable versions depending on 

debug/production mode, modis/viirs tile size, and 32- or 64-bit executable? 
2. Buildfiles:  Have you constructed a master build file and auxiliary build files in 

the PGExxx directory using extant PGEs in the NPP2 repository as examples? 
3. Library versions used:  Have you carefully edited the PGExxx_EnvSetup.csh 

file in the COMB directory?  In particular, if there are library groups that your 
code does not depend on, you should edit out references to them. 

4. Perl scripts:  Does your perl script also provide for different executable versions 
depending on debug/production mode, modis/viirs tile size, and 32- or 64-bit 
executable? 

5. Metadata:  Are values determined for all the metadata in the structure 
HDFGridMetaData (for gridded output) or the HDFSwathMetaData class (for 
Level1/Level2 data)?  You should be specifying as many of these as possible in 
your PGExxx.h include file.  Others, such as GRings, might be copied from other 
files.  Production times are calculated by the class modules themselves. 

6. Big- and Little-Endian considerations:  these will probably not affect your code 
unless you are dealing with the IDPS OPS code that decodes the raw RDRs, but 
it may if you are reading other “bags-of-bytes” structures out of an HDF5 file.  If 
you are affected, use the compile-time flags (see above regarding makefile flags) 
to notify the preprocessor to take big/little endian into consideration.  Examples 
abound in the RDR/SDR/GEO code; look in the NPP2/PRO/SDR/VIIRS library 
code for examples. 
 

32- vs. 64-bit considerations:  See above under “LUTs and LUT structures” for one 
set of considerations.  Also, be aware that in a very few places, the IDPS code 
directly sets addresses as being UInt64, usually if it is passing an address to a 
FORTRAN module.  When this happens, you must conditionally define the address 
as UInt32 or UInt64 using the compile-time flags and appropriate preprocessor 
directives. 
 
7. Other nitty-gritty:   

a. You need not worry about mentions of ProCmnLogger::getLogger nor 
comment out mentions of ProCmnAlgorithm. 

b. The overall IDPS OPS Version for use by the code is set by the (Land 
PEATE) code module “Idps_Ops_Version.cpp” in the directory 
NPP2/IDPS/PRO/CMN/ProcessingIO/src.  Edit the version there and 
nowhere else. 



 
 

August 2011 Page 6 
 

c. Surround mentions of any sort of mutex or mutex mounts with the 
preprocessor directive “#if defined(_REENTRANT) || 
defined(_THREAD_SAFE)” and “#endif” 

8. LongNames and Shortnames:  Be sure to double check the LongNames and 
the ESDTs for your PGE’s outputs against the latest Land PEATE System 
Description Document. 

9. LUNs and Param names: Many of these changed in the NPP2 repository.  
Verify that the values you are using are in line with those defined in the 
NPP2/OPS/Include/LPEATE_Data/NPP_LP_Params.h.  Note that if a needed 
LUN is not available and must be added that the limit is 32 characters.  Also note 
that if you must make a change to this file, it will require a redelivery of the OPS 
libraries. 

10. Coarse Product Generating Shared Code:  The NPP_CRS shared code is to 
be run for all L2 outputs.  If the PGE you are working on does not call the 
NPP_CRS shared code, it will need to.  See PGE303, PGE330 or PGE311 perl 
scripts for examples on how the code is called.  Similarly for L2G and L3 PGEs 
whose code is based on MODIS code -- we now have an NPP_CRS_L3 shared 
code that is to be run for these products. 

WHEN YOU ARE TESTING 
• Be sure your code runs and produces the same output on 32- and 64-bit 

machines (exception is code which runs only on the 64-bit machines due to large 
memory requirements) 

BEFORE YOU SUBMIT YOUR CODE FOR BASELINING 
1. Did you run “astyle” on all your C/C++ code and include files?  (Or the “doastyle” 

script?  It is in the directory NPP2/Utilities.) 
2. Did you update the PGE history file? 
3. Did you include a sample pcf? 
4. Did you include a dependency list file (not a ciList file) 
5. Did you include a ciList file? 
6. Did you include a README file that explains how to build and run the code?  

Please do not recycle the incredibly out-of-date files that include mention of 
“MODIS STORE” and so on.  These are unnecessary; you should be directing 
users to use the Land PEATE setup files which do all of this automatically.  There 
are lots of good README file examples in the repository.  If your README 
includes mention of out-of-date material, fix it.  If your PGE has special 
production rules for executing within MODAPS, like using profiles, make note of it 
at the bottom of the README.  See PGE353 and PGE302 README files for an 
example. 

7. Does all of your code have appropriate headers that follow those in 
NPP2/Templates?  Be sure that the contact information/points of contact for the 
Land PEATE are up to date. 

8. Does any IDPS code included with yours need a header because you changed it 
in some way?  Please put it there. 

9. Did you build in production mode and make sure that your submission to CM is 
geared to production mode? 



 
 

August 2011 Page 7 
 

CHANGING A LIBRARY AND/OR ADDING TO A LIBRARY GROUP 
All libraries in the NPP2 and NPP2/branches/Mx4 repository must be versioned.  

After a library revision is checked in with CM, if you make *any* changes to a library, 
you should do several other things when you check that revision in to the repository: 
 
1. If the library version file in Library/buildfiles still reflects the latest baselined 

version number, then update that file by upping the revision number.  (It might be 
updated already if somebody else, or you, has already changed the library.) 

2. Update the library history file in the Library/COMB directory.  You need to edit 
both the top and bottom portions of the file. 

3. Generate and edit a dependency list file (the DEPENDS parameter when you 
source a build file will do that).  Edit it to remove directory references above 
"NPP2/", and check it in (it will have been created in the 
Library/COMB/DependencyLists directory.)  

4. Check the README file in Library/COMB to make sure it does not need revision. 
(It probably doesn't.) 

5. If you added another library to a group, or if you moved a library from one group 
to another, edit  <Group>_Libraries.directoryList in the Library/COMB directory.   
(e.g. when an IDPS library was deleted, “IDPS_Libraries.directoryList”, the file 
containing the directory listing was edited.) 

6. This is a critical step:  Be sure that you rebuild all libraries and all code 
modules in the repository in both debug and production modes and that all builds 
are successful.  Repeat the experiment on a 64-bit machine if you have been 
working on a 32-bit machine, and vice versa.  You need to do this before your 
library group is submitted for baseline! 

 
THE SCIENCE LIBRARY 
The "LPEATE_SPECIAL" library directories under the lib32, lib64, and Library 
directories contain versions of libraries built with a set of flags different from the 
standard set.  At this time only the SCIENCE library group can be built with a special set 
of flags.  There is a "README.txt" file in lib32, and another one in lib64, which explain 
the LPEATE_SPECIAL library.  To quote the README in the lib32 directory: 
   NPP2/lib32/LPEATE_SPECIAL -- Libraries compiled with one or more 
                    special flags set by LPEATE.  Occurs rarely, and only for 
                    SCIENCE libraries.  These libraries 
                    all end with the suffix "P.L.<version number >.a" 
 
                    LPEATE_SPECIAL LIBRARIES WERE BUILT WITH THE SPECIAL FLAG 
"USE_L2G_INCLUDES". 
Note this does *not* mean that the SCIENCE library group cannot exist except in the 
LPEATE_SPECIAL directory.  In fact, the regular production compiles of the SCIENCE 
Libraries are stored with the compiled OPS and IDPS libraries. If you need to build the 
Science libraries with a special flag (e.g.USE_L2G_INCLUDES) simply say:   



 
 

August 2011 Page 8 
 

source dev_NPP_SCI_env_setup USE_L2G_INCLUDES 
which will return these messages: 

BUILDING SCIENCE ENVIRONMENT IN PRODUCTION MODE. 
BUILDING SCIENCE ENVIRONMENT WITH TILE SIZE SET TO MODIS TILE SIZE 
BUILDING SCIENCE ENVIRONMENT WITH SPECIAL_CFLAGS SET TO -DUSE_L2G_INCLUDES 

or 
source dev_NPP_SCI_env_setup debug USE_L2G_INCLUDES  

which returns the messages 
BUILDING SCIENCE ENVIRONMENT IN DEBUG MODE. 
BUILDING SCIENCE ENVIRONMENT WITH TILE SIZE SET TO MODIS TILE SIZE 
BUILDING SCIENCE ENVIRONMENT WITH SPECIAL_CFLAGS SET TO -DUSE_L2G_INCLUDES 

Other possible “special” flags are TEST NOISY, ISINUS1, USDEF, TRACE_OUTPUT, 
and PARAM_ALLOW_SPACE. 
 


